Bayesian Nonparametric ROC Regression Modeling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric Modeling for Multivariate Ordinal Regression

Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects which enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework e...

متن کامل

Bayesian Nonparametric Modeling in Quantile Regression

We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...

متن کامل

Bayesian nonparametric approaches for ROC curve inference

Abstract The development of medical diagnostic tests is of great importance in clinical practice, public health, and medical research. The receiver operating characteristic (ROC) curve is a popular tool for evaluating the accuracy of such tests. We review Bayesian nonparametric methods based on Dirichlet process mixtures and the Bayesian bootstrap for ROC curve estimation and regression. The me...

متن کامل

Incremental Nonparametric Bayesian Regression

In this paper we develop an incremental estimation algorithm for infinite mixtures of Gaussian process experts. Incremental, local, non-linear regression algorithms are required for a wide variety of applications, ranging from robotic control to neural decoding. Arguably the most popular and widely used of such algorithms is currently Locally Weighted Projection Regression (LWPR) which has been...

متن کامل

Bayesian nonparametric covariance regression

Capturing predictor-dependent correlations amongst the elements of a multivariate response vector is fundamental to numerous applied domains, including neuroscience, epidemiology, and finance. Although there is a rich literature on methods for allowing the variance in a univariate regression model to vary with predictors, relatively little has been done in the multivariate case. As a motivating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2013

ISSN: 1936-0975

DOI: 10.1214/13-ba825